PRINCIPLES OF COSMETIC EVALUATION

Points to be covered in this topic

- → SEBUMETER
 - **→ CORNEOMETER**
- **→** MEASUREMENT OF TEWL
- → SKIN COLOR
- → HAIR TENSILE STRENGTH
- → HAIR COMBING PROPERTIES
 - MEASUREMENT SOAPS AND SYNDET BARS

SEBUMETER

 Instrument used for determining the sebum level of the skin surface as well as on scalp and hair.

PRINCIPLE

- The measurement is based on the principle of grease spot photometry.
- The measuring head of the cassette with its special tape is placed on the skin.
- It is then inserted into a slot of the device, where the transparency is measured by a light source passing through the tape.

- A photocell measures the transparency.
- A microprocessor calculates the result, which is shown on the display in mg sebum/cm2 of the skin.

MEASUREMENT OF SEBUM

- Sebum is an oily secretion from the sebaceous gland.
- Sebum waterproofs and lubricates the skin and hair of mammals.
- Sebum affects the permeability of skin and absorptivity of water.
- Protects skin against bacteria, fungi.
- Sebaceous glands often go into overdrive during puberty, and the excess sebum can cause oily skin, odors, and acne.
- There are a number of disorders associated with sebum and the sebaceous glands.
- Hence measurement of natural presence of sebum is of particular interest to dermatologists and cosmeticians.

- Lipids are synthesized at a constant rate in sebaceous glands and secreted onto skin surface an average of 8 days after synthesis.
- As a result measurement of the sebum content of a skin specimen of known surface area should allow calculation of the sebum production rate which has been occurring in vivo.
- Average sebum production rate of scalp is 1.45mg/10sq.cm/3hr

❖ SEBUMETER PROBE (CARTRIDGE)

- The measuring head of the Cartridge exposes a 64mm² measuring section of the tape.
- For a measurement the tape is transported forward by a trigger at the side of the Cartridge to expose a new section of the tape.
- The used tape is rewound inside the cassette.
- One Cartridge can be used for approx. 450 measurements.
- The scale from 1-0 on the trigger shows how much of the tape is still unused.
- For hygienic reasons when exhausted, the Cartridge is simply replaced.
- The instrument has an accuracy of pm $\pm 5\%$.
- The reading of sebum may be displayed as a number or as type of skin i.e. dry; dry/normal; normal; normal/oily; oily.

ADVANTAGES OF THE SEBUMETER

- 1. Quick and very easy measurements.
- 2. Zero calibration.
- 3. Probe is small and lightweight.
- 4. The accuracy of the device can be easily checked.
- 5. Constant pressure on the skin.

APPLICATIONS

- 1. Used in dermatological
- 2. It is important for claim support and efficacy testing of all kinds of cosmetic and pharmaceutical products.

CORNEOMETER

PRINCIPLE

- The measurement is based on capacitance measurement of a dielectric medium.
- The corneometer measures the change in dielectric constant due to skin surface hydration changing the capacitance of precision capacitor.

- The measurement can detect even slight changes in the hydration level.
- The corneometer measures in arbitrary units from 0 to 120.

ADVANTAGES OF THE CORNEOMETER

- 1. Very quick measurement (1 s)
- 2. Continuous measurements
- 3. Substances on the skin (e.g. salts or residues of topical applied products) have only minimal influence due to capacitance measurement.
- 4. The measurement depth is very small (10-20 μ m of the stratum corneum) (e.g. from the blood vessels).
- 5. The probe is small and lightweight for easy handling and measurement on all body sites (e.g. lips etc.).
- 6. The spring in the **probe head ensures** constant pressure on the skin enabling exact, reproducible measurements.
- 7. The accuracy of the Corneometer probe and the penetration depth of the scatter field can be checked easily anytime.
- 8. The probe head can quickly be cleaned
- The Corneometer is explicitly recommended is the latest guideline for skin water measurements by the experts of EEMCO (European group on efficacy measurement and evaluation of cosmetics and other products)

*** APPLICATION**

- · The basic measurement for all bio-medical and cosmetic applications.
- Ideal instrument for formulation, claim support and efficacy & safety testing of all cosmetics & skin care products raw materials, pharmaceuticals, household products, detergents, food and food supplements and many more
- Typical claims (examples) substantiated with the Corneometer:
 hydrating/moisturizing, against dry skin, for sensitive skin, protecting,
 restoring/repairing, supports healing, soothing, normalizing, vitalizing,
 and many more.
- Used as standard in dermatological basis research in humans and animals.
- Occupational health assesses this parameter to underline the importance of skin protection measures.

MEASUREMENT OF TEWL

DEFINITION

 The measurement of quantity of water that passes from inside a body through the epidermal layer to surrounding atmosphere via diffusion and evaporation processes.

*** MEASUREMENT OF TEWL**

- 1. Identifying skin damage
- 2. Environmental factors
- 3. Moisture content

MEASUREMENT PRINCIPLE

- A certain evaporation of water from the skin takes always place as part
 of the normal skin metabolism.
- However, as soon as the barrier function of the skin is slightly damaged, the water loss will increase (even with smallest damages invisible to the human eye).
- Therefore this measurement is a basis for all cosmetic and dermatological research.
- The Tewameter probe measures the density gradient of the water evaporation from the skin indirectly by the two pairs of sensors (temperature and relative humidity) inside the hollow cylinder.
- This is an "open chamber" measurement. This method is the only to assess the TEWL continuously without influencing its micro environment.
- The measured values express the evaporation rate in g/h/m².

$$\frac{dm}{dt} = -D.A.\frac{dp}{dx}$$

√ Where

- **A** = surface [m²]
- m = water transported
- **t** = time
- D = diffusion constant
- p = vapour pressure of the atmosphere
- x = distance from skin surface to point of measurement

✓ Advantages

- 1. Extremely accurate and quick
- 2. Small size of the probe head minimizes the influence of air
- 3. Easy to handling
- 4. Display of RH and °C separately
- 5. Special calculation i.e. SSWL
- 6. Accuracy of the probe can be checked anytime

APPLICATION

- Scalp, lip, hair measurements Sweat studies
- Used in vitro testing
- Used for dermatological research Veterinary dermatology and zoology
- Used for textile/food/paper/tissue industry.

SKIN COLOR

- 1. Skin colour include the pigments cartotene, haemoglobin, and melanin.
- 2. Epidermis (Refer Unit I PPT)
- 3. Skin type (Refer Unit III PPT)
- 4. Measurement of skin colour
 - i. Reflectance spectrophotometer
 - ii. Chromameter
 - iii.Mexameter
 - iv. Derma spectrometer
- **MEASUREMENT OF SKIN COLOUR**
- 1. REFLECTANCE SPECTROPHOTOMETER
 - Two types of skin reflectance instrument are available
 - i. Tristimulus colourimeter (chromameter from Minolta)

ii. Narrow band simple reflectance meters (derma spectrometer from cortex and Mexameter from courage khazaka)

2. CHROMAMETER

- · It is used for the observation of skin colour.
- The CR-400 chroma meter is a handheld, portable measurement instrument designed to evaluate the color of objects.
- High accuracy, reliable colorimeter helps users control the color quality, consistency, and appearance of their samples in a more efficient.

- It accurately identifies color characteristics in objects
- Determines color differences between objects, and provides pass/fail assessments to immediately determine if the sample meets the defined standard.
- This makes the CR-400 ideal for color inspections of food, building material, plastic, and dermatological applications within quality control, quality assurance, and R&D fields.

3. MEXAMETER

 The Mexameter is a device that measures simultaneously two major components of skin pigmentation: melanin and hemoglobin.

✓ Measurement Principle

- · It is based on light reflection and absorption.
- The probe emits three wavelengths of light, chosen to correspond to the different absorption rates of melanin and haemoglobin.
- This light emitted by the probe is reflected by the skin and the receiver in the probe measures this reflected light.
- It is only the diffuse and scattered light that is measured.
- The results are shown in 1 second as index numbers between 0 and 999.
- The probe allows the measurement to be made quickly (1 second).
- The probe head is spring loaded so that a constant pressure is provided.

✓ Application

- Ideally suited for product development, claim support and efficacy testing
- Can be used for objective clinical assessment, allergy and patch testing
- Can be used for monitoring therapies Measurement of melanoma and scar tissue Suitable for medical surveys Assessing melanin and erythema in a range of research applications

HAIR TENSILE STRENGTH

- The strength of hair is evaluated by tensile test or tension test.
- It is made up of a protein called keratin which is a polyamide molecule with many disulfide chains between the bridges. This is responsible for the strength and stiffness of hair.

- In general, human hair has a tensile strength of 200 250 MPa and yield strength of 140 - 160 MPa.
- The real challenge in measuring the tensile strength of hair is handling single strands of hair which have a diameter of about 0.025 mm to 0.076 mm.
- ✓ The instrument used for testing tensile strength is tensile tester
 - Two vises apply tension to a specimen by pulling at it, stretching the specimen until it fractures. The maximum stress it withstands before fracturing is its ultimate tensile strength.
 - Tensile strength is defined as a stress, which is measured as force per unit area. For some non-homogeneous materials (or for assembled components) it can be reported just as a force or as a force per unit width.

HAIR COMBING PROPERTIES

- Combability may be defined as the subjective perception of the easy or difficult way for combing the hair.
- It is directly related to the forces which are opposite to the action of combing the hair.
- Other factors related to combability involve malleability and mechanical damages

- On the cuticle, cosmetic products are deposited.
- Approximately 8 to 11 layers of the cuticle, which are overlapped.
- Each layer is formed by only one cell.
- Each cell of the cuticle has a rectangular shape and they overlap in such a way, that only 1/6 of them are exposed.

SEVERAL FACTORS INFLUENCE THE FRICTION

- Friction is higher in wet hair than in dry hair.
- Due to the chemical composition and high pH of ingredients during permanent waving and straightening the friction is increased.
- More is the detergent powder in the shampoo, higher is the friction.
 The addition of conditioning substances promotes a lower friction coefficient than the one brought by the shampoo, without these substances.
- Conditioning cream, rinse cream and related products reduce the friction among hair threads.

MEASUREMENT SOAPS AND SYNDET BARS

> SOAPS

- · Soaps are water soluble sodium or potassium salts of fatty acid.
- Soaps are made from fats and oils or their fatty acid by treating them chemically with a strong alkali.

TYPES OF SOAPS

- Transparent soaps
- · Bathing bar
- Castile soap
- Superfatted soaps Carbolic and carbonated soaps

* RAW MATERIALS

✓ Fats and oils

- Fat mixture containing saturated and unsaturated and long and short chain fatty acid in satiable proportion are used.
- · Saturated fatty acids with 12 to 18 carbon atoms are used.
- Eg. Lauric, Myristic, Palmitic, Stearic and Oleic Acid

✓ Alkalis

- · Caustic soda is used as a raw material in the preparation of soap.
- · Caustic potash is used in making soft soaps
- Potassium carbonate and soda ash are used to saponify fatty acids

ADDITIVE USED

✓ Antioxidants

 These are used to stabilize the soap against rancidity. Eg. Sodium silicate, sodium hyposulphite, sodium thiosulphate.

✓ Whiteners

Titanium dioxide and zinc oxide are used to improve whiteness.

✓ Perfumes

• The pH of the soap is around 10.0. The selected perfume should be stable in this pH range.

SOAP MANUFACTURING

COLD PROCESS

- In this process, mixing of fat and strong alkali is carried out substantially at room temperature so that little more than emulsification takes place.
- Saponification is completed after this mixture is run into frames in several days at warm temperature.
- Since there is no opportunity to adjust proportions of fat and alkali calculation of quantities to be used should be made carefully.

Heating

❖ SEMI-BOILED PROCESS

- The semi-boiled process differs from the cold process in the fact that the saponification mixture is heated to 70 - 90° C using a steam-heated coil to accelerate and complete the saponification reaction.
- Dyes, perfumes, and additives are added at the end of the process to prevent them from evaporating.
- of soda undergoing saponification to

ONTIFICATION KETETLE

- The process allows the quantity of soda undergoing saponification to be adjusted before the crude soap is drawn off.
- It also allows manufacturing waste to be recycled, better incorporation
 of the additives and a wider choice of raw materials.

Sode

*** FULL BOILED PROCESS**

- In this process, large cylindrical kettles with cone bottoms equipped with open and sometimes with closed coils for steam are used.
- The kettles are often provided with delivery pipes for fats, water, lye

Process includes:

- · Saponification reaction
- Graining out and washing
- Strong change
- Finishing or fitting operation

CONTINUOUS SAPONIFICATION

- These processes are used when the production is on very large scale.
- Fats are first converted into fatty acids and glycerin using high pressure in continuous fat splitting process.

SYNDET BARS

- The word "syndet" is derived from "synthetic" combined with "detergent".
- Technically it refers to the binding that occurs between different detergents, also called surfactants or tensioactive agents.

KLM

❖ INGREDIENTS USED

- Sodium cocoyl isethionate (the most widely used) Sulfosuccinates
- · Alpha olefin sulfonates
- Alkyl glyceryl ether sulfonate
- · Sodium cocoyl monoglyceride
- Sulfate betaines