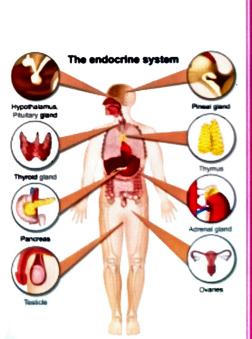
ENDOCRINE SYSTEM


Points to be covered in this topic

- 1. INTRODUCTION
- 2. HORMONES

- 3. CLASSIFICATION OF HORMONES
- ▶ 4. MECHANISM OF ACTION OF HORMONE
- ► 5. STRUCTURE, FUNCTIONS AND DISORDERS OF VARIOUS GLANDS
 - (a) PITUITARY GLAND
 - (b) PARATHYROID GLAND
 - (c) THYROID GLAND
 - (d) ADRENAL GLAND
 - (e) PANCREAS
 - (f) PINEAL GLAND
 - (g) THYMUS GLAND

□ INTRODUCTION

- The endocrine system is the collection of glands that secrete hormones directly into the circulatory system to be carried to a distant target organ.
- The endocrine system consist of ductless glands which secrete hormones.
- Hormones regulate the metabolic processes of the body.
- The secretion of hormones by other endocrine glands is mostly controlled by pituitary gland. Hence, it is called master gland of the body
- Endocrinology is the branch of science that deals with the study of structure and function of the endocrine glands, their disorders and their treatment.


□ HORMONES

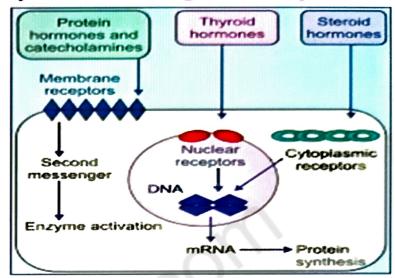
- They are mediator molecules that are released in one part of the body but regulate the activity of cells in other parts of the body.
- They regulate important body processes and functions including growth, reproduction and metabolism.

CLASSIFICATION OF HORMONES

Based on chemical nature, hormones are classified into three types:

- 1. Steroid hormones
- 2. Protein hormones
- 3. Derivatives of the amino acid called tyrosine

Endocrine system


Рамстевы

1. Steroid hormones

- Steroid hormones are the hormones synthesized from cholesterol or its derivatives.
- Steroid hormones are secreted by adrenal cortex, gonads and placenta.

2. Protein hormones

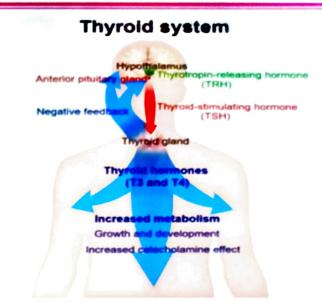
- Protein hormones are large or small peptides.
- Protein hormones are secreted by pituitary gland, parathyroid glands, pancreas and placenta

3. Derivatives of the amino acid called Tyrosine

• Two types of hormones, namely Thyroid hormones and adrenal medullary hormones are derived from the amino acid tyrosine

Steroids

- ✓ Aldosterone
- √ 11-deoxycorticosterone
- ✓ Cortisol
- ✓ Corticosterone
- ✓ Testosterone
- ✓ Dihydrotestosterone
- ✓ Dehydroepiandrosterone
- ✓ Androstenedione
- ✓ Estrogen
- ✓ Progesterone



Proteins

- ✓ Growth hormone (GH)
- ✓ Thyroid-stimulating hormone (TSH)
- ✓ Adrenocorticotropic hormone (ACTH)
- ✓ Follicle-stimulating hormone (FSH)
- ✓ Luteinizing hormone (LH)
- ✓ Prolactin
- ✓ Antidiuretic hormone (ADH)
- ✓ Oxytocin
- ✓ Parathormone
- ✓ Calcitonin
- ✓ Insulin
- ✓ Glucagon
- ✓ Somatostatin
- ✓ Pancreatic polypeptide
- Human chorionic gonadotropin (HCG)
- ✓ Human chorionic somatomammotropin

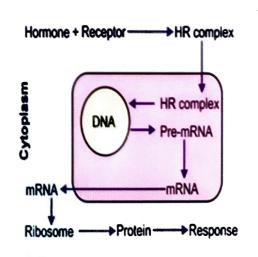
Derivatives of Tyrosine

- ✓ Thyroxine (T4)
- ✓ Triiodothyronine (T3)
- ✓ Adrenaline (Epinephrine)
- ✓ Noradrenaline (Norepinephrine)
- ✓ Dopamine

■ MECHANISM OF ACTION OF HORMONE

- Hormone does not act on the target cell directly.
- It combines with receptor to form hormone-receptor complex.
- This complex executes the hormonal action by any one of the following mechanisms
 - 1. By altering permeability of cell membrane
 - 2. By activating intracellular enzyme
 - 3. By acting on Genes

1. BY ALTERING PERMEABILITY OF CELL MEMBRANE


- Neurotransmitters in synapse or neuromuscular junction act by changing the permeability of postsynaptic membrane.
- For example, in a neuromuscular junction, when an impulse (action potential) reaches the axon terminal of the motor nerve, acetylcholine is released from the vesicles.
- Acetylcholine increases the permeability of the postsynaptic membrane for sodium, by opening the ligand-gated sodium channels.
- So, sodium ions enter the neuromuscular junction from ECF through the channels and cause the development of Endplate potential.

2. BY ACTIVATING INTRACELLULAR ENZYME

- Protein hormones and the catecholamines act by activating the intracellular enzymes.
- First Messenger The hormone which acts on a target cell, is called first
 messenger or chemical mediator. It combines with the receptor and
 forms hormone-receptor complex.
- Second Messenger Hormone-receptor complex activates the enzymes
 of the cell and causes the formation of another substance called the
 second messenger or intracellular hormonal mediator.
- Second messenger produces the effects of the hormone inside the cells.
- Protein hormones and the catecholamines act through second messenger. Most common second messenger is cyclic AMP

3. BY ACTING ON GENES

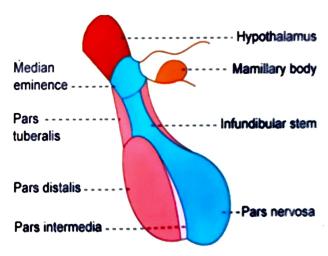
- Thyroid and steroid hormones execute their function by acting on genes in the target cells.
- Sequence of Events during Activation of Genes:
 - Hormone enters the interior of cell and binds with receptor in cytoplasm (steroid hormone) or in nucleus (thyroid hormone) and forms hormone receptor complex
 - ii. Hormone-receptor complex moves towards the DNA and binds with DNA
 - iii. This increases transcription of mRNA
 - iv. The mRNA moves out of nucleus and reaches ribosomes and activates them
 - v. Activated ribosomes produce large quantities of proteins
 - vi. These proteins produce physiological responses in the target cells

■ PITUITARY GLAND - ITS STRUCTURE AND FUNCTIONS

INTRODUCTION

- It is also known as hypophysis is a small endocrine gland
- It is situated in a depression called 'Sella Turcica', present in the sphenoid bone at the base of skull.
- It is connected with the hypothalamus by a stalk like structure called the infundibulum.
- Divisions of Pituitary Gland- Two divisions:
 - 1. Anterior pituitary or Adenohypophysis
 - 2. Posterior pituitary or Neurohypophysis

1. Anterior pituitary or Adenohypophysis


- Anterior pituitary is also known as the Master gland because it regulates many other endocrine glands through its hormones
 - Parts-It consists of three parts
 - 1. Pars distalis
 - 2. Pars tuberalis
 - 3. Pars intermedia
- Histology It consists of two parts
 - 1. Chromophobe cells
 - 2. Chromophil cells

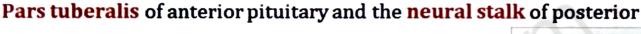
1. Chromophobe Cells

- These cells form 50% of total cells in anterior pituitary.
- Chromophobe cells are not secretory in nature, but are the precursors of chromophil cells.

2. Chromophil Cells

- Chromophil cells contain large number of granules
- They have different types of cells

Classification on the basis of secretory nature:


Chromophil cells are classified into five types:

- i. Somatotrophs, which secrete growth hormone
- ii. Corticotropes, which secrete adrenocorticotropic hormone
- iii. Thyrotropes, which secrete thyroid-stimulating hormone (TSH)
- iv. Gonadotrophs, which secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH)
- v. Lactotrophs, which secrete prolactin.
- Hormones secreted by anterior pituitary and their functions

Hormones secreted by anterior pituitary and their functions		
s. NO	HORMONES	FUNCTIONS
1	Growth hormone (GH) or somatotropic hormone (STH)	Important for normal growth and development of the body
2	Thyroid-stimulating hormone (TSH) or thyrotropic hormone	Regulates the synthesis of thyroid hormone in thyroid gland
3	Adrenocorticotropic hormone (ACTH)	Stimulates the adrenal cortex to synthesis its hormones
4	Follicle-stimulating hormone (FSH)	Stimulates: i. ovary in females to produce estrogen ii. Testis in males to produce spermatozoa
5	Luteinizing hormone (LH) in females or interstitial cell- stimulating hormone (ICSH) in male	Stimulates: i. ovary in females to produce progesterone ii. Testis in males to produce testosterone
6	Luteotropic hormone	Stimulates milk production in females

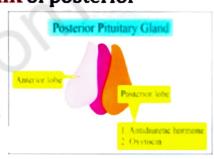
2. Posterior pituitary or Neurohypophysis

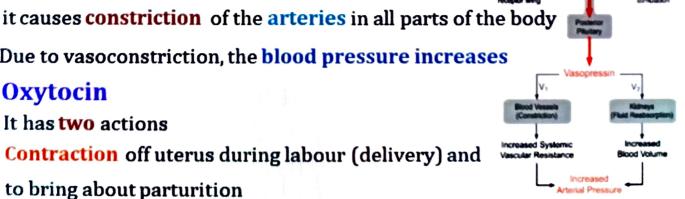
- Posterior pituitary does not synthesis hormones but it stores and releases two hormones which are synthesized by the hypothalamus.
- The axon terminals in the posterior pituitary are associated with specialized neuroglia called pituicytes
- Parts- Three parts:
 - Pars nervosa or infundibular process
 - ii. Neural stalk or infundibular stem
 - iii. Median eminence.

pituitary together form the hypophyseal stalk.

Hormones of posterior pituitary hormones are: i. Antidiuretic hormone (ADH) or vasopressin

ii. Oxytocin


- a) Retention of water
 - Major function of ADH is retention of water by acting on kidneys
 - It increases the facultative reabsorption of water from distal convoluted tubule and collecting duct in the kidneys
- b) Vasopressor action
 - In large amount, ADH shows vasoconstrictor action.


Due to vasoconstriction, the blood pressure increases

ii. Oxytocin

It has two actions

- Contraction off uterus during labour (delivery) and to bring about parturition
- b) Ejection of milk from the breast

□ DISORDERS OF PITUITARY GLAND

✓ Hyperactivity of anterior pituitary

1. Gigantism

- It is characterized by excess growth of the body.
- The subjects look like the giants with average height of about 7 to 8 feet.
- It Causes due to hypersecretion of GH in childhood or in pre-adult life before the fusion of epiphysis of bone with shaft.

2. Acromegaly

 It is the disorder characterized by the enlargement, thickening and broadening of bones, particularly in the extremities of the body

3. Acromegalic Gigantism

• It is a rare disorder with symptoms of both gigantism and acromegaly.

✓ <u>Hypoactivity of anterior pituitary</u>

1. Dwarfism

• It is a pituitary disorder in children, characterized he stunted growth.

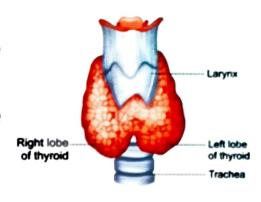
2. Acromicria

• It is a rare disease in adults characterized by the atrophy of the extremities of the body

✓ <u>Hyperactivity of Posterior Pituitary</u>

- 1. Syndrome of Inappropriate Hypersecretion of Antidiuretic Hormone (SIADH)
- SIADH is the disease characterized by loss of sodium through urine due to hypersecretion of ADH.

✓ Hypoactivity of Posterior Pituitary


1. Diabetes Insipidus

•It s is a posterior pituitary disorder characterized by excess excretion of water through urine.

THYROID GLAND- ITS STRUCTURE AND FUNCTIONS

❖ INTRODUCTION

- Thyroid is an endocrine gland situated at the root of the neck on either side of the trachea.
- It has two lobes, which are connected in the middle by an isthmus
- Thyroid is larger in females than in males.

Histology of Thyroid Gland

- Thyroid gland is made up of several number of closed follicles which is lined by cuboidal epithelial cells also known as follicular cells.
- Follicular cavity is filled with a colloidal substance known as thyroglobulin, which is secreted by the follicular cells.

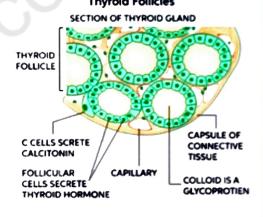
 Thyroid Follicles

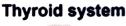
Hormones of Thyroid Gland

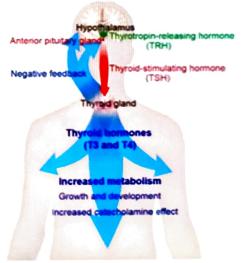
Thyroid gland secretes three hormones:

- 1. Tetraiodothyronine or T4 (thyroxine)
- 2. Tri-iodothyronine or T3
- 3. Calcitonin.

Synthesis of Thyroid Hormones


STAGES OF SYNTHESIS OF THYROID HORMONES

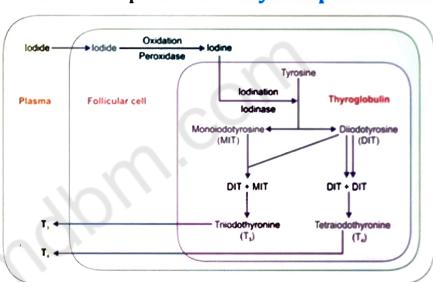

It occurs in five stages:


- 1. Thyroglobulin synthesis
- 2. Iodide trapping
- 3. Oxidation of iodide
- 4. Transport of Iodine into follicular cavity
- 5. Iodination of tyrosine
- 6. Coupling reactions

1. Thyroglobulin Synthesis

- Endoplasmic reticulum and Golgi apparatus in the follicular cells of thyroid gland synthesize and secrete thyroglobulin continuously.
- Then it is stored

2. Iodide Trapping


- Iodide is actively transported from blood into follicular cell, against electrochemical gradient. This process is called iodide trapping.
- Iodide is transported into the follicular cell along with sodium by sodium-iodide symport pump, which is also called iodide pump.

3. Oxidation of Iodide

- Iodide must be oxidized to elementary iodine, because only iodine is capable of combining with tyrosine to form thyroid hormones.
- It occurs inside the follicular cells in the presence of thyroid peroxidase.

4. Transport of Iodine into Follicular Cavity

 From the follicular cells, iodine is transported into the follicular cavity by an iodide-chloride pump called pendrin.

5. Iodination of Tyrosine

- · Combination of iodine with tyrosine is known as iodination.
- First, iodine is transported from follicular cells into the follicular cavity, where it binds with thyroglobulin. This process is called organification of thyroglobulin.
- Iodide combines with the amino acid tyrosine and forms
 - a) Mono iodo Tyrosine (MIT) b) Di iodo Tyrosine (DIT)

6. Coupling Reactions

- Iodotyrosine residues get coupled with one another.
- The coupling occurs in different configurations, to give rise to different thyroid

Tyrosine + I = Monoiodotyrosine

(MIT) MIT + I = Di-iodotyrosine (DIT)

DIT + MIT = Tri-iodothyronine (T3)

MIT + DIT = Reverse T3

DIT + DIT = Tetraiodothyronine or

Thyroxine (T4)

Functions of Thyroid Gland

- 1. Increase in basal metabolic rate
 - ✓ Thyroid hormone increases basal metabolic rate.

2. Effect on growth

- ✓ T3 and T4 promote the physical growth in children, development of skeleton growth of individual and also promote mental growth.
- ✓ It promotes growth and development of brain during fetal life.
- ✓ Hypersecretion of thyroid hormone causes mental retardation in children.

3. Effect on carbohydrate, fat and protein metabolism

- ✓ The thyroid hormones stimulate protein synthesis increases lipolysis, increase cholesterol excretion in bile and increase the use of glucose for ATP production.
- 4. Effect on cardio vascular system
 - ✓ Thyroid hormones increases heart rate, cardiac contractility and cardiac output
 - ✓ They also promote vasodilation, which leads to enhanced blood flow to many organs.

5.Effect on central nervous system

✓ Both decreased and increased concentrations of thyroid hormones lead alterations in mental state.

6. Action on skeletal muscle

- ✓ **Hypersecretion** of thyroxine causes weakness of the muscles due to catabolism of proteins. This condition is called **Thyrotoxic myopathy**.
- ✓ Hyperthyroidism also causes fine muscular tremor.

7. Action on gastrointestinal tract

- ✓ Thyroxine increases the appetite and food intake.
- ✓ It also increases the secretions and movements of GI tract.

Disorders of Thyroid gland

1. HYPERTHYROIDISM

Increased secretion of thyroid hormones is called hyperthyroidism.

2. HYPOTHYROIDISM

- Decreased secretion of thyroid hormones is called hypothyroidism.
- Hypothyroidism leads to myxedema in adults and cretinism in children

3. GOITER

- Goiter means enlargement of the thyroid gland.
- It occurs both in hypothyroidism and hyperthyroidism.

□ PARATHYROID GLAND- ITS STRUCTURE AND FUNCTIONS

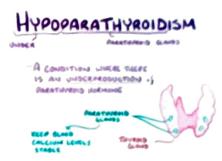
* Introduction

- Human beings have four parathyroid glands
- They are situated on the posterior surface of upper and lower poles of thyroid gland
- Parathyroid glands are very small in size, with dark brown color

Thyroid gland Parathyroid glands

Structure of parathyroid gland

- The parathyroid glands are composed of masses of epithelial cells
- The cells are of two types
 - 1) Chief cells 2) Oxyphil cells
- The chief cells secrete the Parathyroid hormone (PTH)


Functions of parathyroid hormone

- PTH increases calcium level of plasma and extracellular fluid
- This effect is produced by the following mechanisms:
 - **✓ Mobilization of calcium** of bone into the extracellular
 - ✓ Increased reabsorption of calcium in the renal tubule
 - ✓ Increased absorption of calcium in the gastrointestinal tract

Disorders of Parathyroid gland

1. HYPOPARATHYROIDISM - HYPOCALCEMIA

- Hyposecretion of PTH is called hypoparathyroidism. It leads to hypocalcemia (decrease in blood calcium level).
- 2. HYPERPARATHYROIDISM HYPERCALCEMIA
- Hypersecretion of PTH is called hyperparathyroidism. It results in hypercalcemia.

■ ADRENAL GLAND- ITS STRUCTURE AND FUNCTIONS

***** INTRODUCTION

Adrenal glands are called the 'Life- Saving Glands' or 'Essential
 Endocrine Glands'. It is because the absence of adrenocortical hormones
 causes death within 3 to 15 days

Adrenal gland

Kidney

 Absence of adrenomedullary hormones, drastically decreases the resistance to mental and physical stress

Parts of Adrenal Gland

- ✓ Adrenal cortex: Outer portion
- ✓ Adrenal medulla: Central portion

✓ Adrenal cortex

- Layers of Adrenal cortex: three distinct layers
 - i. Zona glomerulosa- an outer layer
 - ii. Zona fasciculata- a middle layer
 - iii. Zona reticularis- an inner layer

Mineralocorficoids Ton Indiana Gilucocorficoids Corfee Corfee Catecholamines

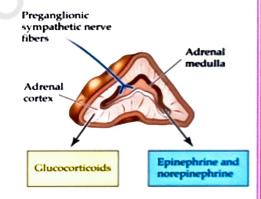
Medulla

Hormones of Adrenal cortex

Different layers of cortex secretes three groups of hormones

- i. Zona glomerulosa secretes Mineralo corticoids
- ii. Zona fasciculata secretes Glucocorticoids
- iii. Zona reticularis secretes Sex steroids

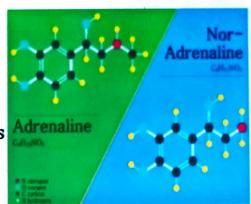
i. Mineralo corticoids


- They are
 - a) Aldosterone b) Deoxycorticosterone
- They influence water and mineral metabolism
- They help to maintain electrolyte and water balance of the body as follows:
 - a) By increasing the reabsorption of sodium in the renal tubules
 - b) By promoting excretion of potassium


ii. Glucocorticoids

- They are
 - a) Cortisol b) Cortisone c) Corticosterone
- They influence carbohydrate metabolism. Functions
 - a) To increase the synthesis of glycogen
 - b) To increase the **breakdown of protein** into amino acids
 - c) Mobilization and redistribution of fat
 - d) Decreasing the production of **eosinophils** and **lymphocytes**
 - e) Anti inflammatory and anti allergic effect

iii. Sex steroids


- They are-
- a) Androgens (in males) b) Oestrogens (in females)
- These two hormones influence growth and sex development
- ✓ Adrenal medulla
 - Hormones of Adrenal Medulla
 - i. Adrenaline
 - ii. Noradrenaline

Functions of Adrenaline & Nor Adrenaline

- Vasoconstriction and rise in blood pressure
- Contraction of splenic capsule and release of RBC
- Dilation of pupil
- Contraction of nictitating membrane in animals
- · Relaxation of the intestine
- Erection of the hair due to contraction of erector pili muscle

Disorders of Adrenal Gland

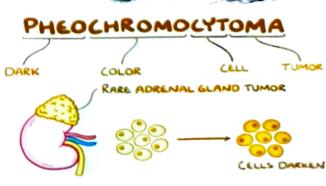
Hypersecretion of adrenocortical hormones leads to the following conditions

Cushing syndrome

Cushing syndrome is a disorder characterized by obesity.

2. Hyperaldosteronism

 Increased secretion of aldosterone is called hyperaldosteronism.


3. Adrenogenital syndrome

- Secretion of abnormal quantities of adrenal androgens develops adrenogenital syndrome.
- Testosterone is responsible for the androgenic activity in adrenogenital syndrome.

4. Pheochromocytoma

 It is a condition characterized by hypersecretion of catecholamines

PANCREAS - ITS STRUCTURE AND FUNCTIONS

- Introduction
 - It is a composite gland that acts as both exocrine and endocrine glands.
 Such glands are called heterocrine glands.
 - The pancreas lies on the posterior abdominal wall in front of abdominal aorta and lumbar vertebrae.
 - It extends between the C-shaped curvature of duodenum and the spleen. The pancreas contains a head, body and tail.

Structure of Pancreas

- The bulk of pancreas contains exocrine cells called acini, it secretes the
 pancreatic juice which is digestive in function
- In between the acini, there are some endocrine cells called Islets of langerhans

✓ Islets of Langerhans

- These are present more in the tail portion of pancreas the islets contains two types of cells:
- Alpha cells which secretes glucagon
 Beta cells secretes insulin

Percrete side Percrete duct Percrete duct Percrete duct Percrete duct Percrete duct Acres cells secrete digentive encymes

i. Glucagon

Functions:

- a) Increase in blood sugar level by mobilizing glycogen from the liver
- b) Mobilization of stored fat
- c) Release of insulin from pancreas

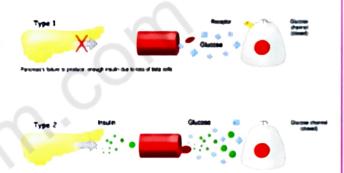
ii. Insulin

Functions:

- a) The important action of insulin is to decrease the level of glucose in blood This effects are:
- b) Increasing glycogen **synthesis** but preventing glycogen **breakdown** in the liver

- c) By preventing fresh synthesis of glucose
- d) Stimulating the uptake and utilization of glucose in the skeletal muscle
- e) Promoting the conversion of glucose into fat in the adipose tissue

Disorders of Pancreas

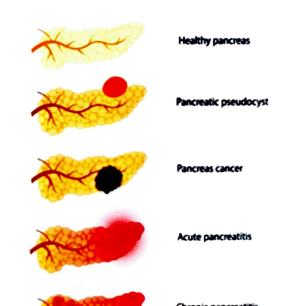

1. HYPOACTIVITY - DIABETES MELLITUS

Diabetes mellitus is a metabolic disorder characterized by high blood glucose level, associated with other manifestations.

Type I Diabetes Mellitus

- It is due to deficiency of insulin because of destruction of β-cells in islets of Langerhans.
- This type of diabetes mellitus may occur at any age of life.
- But, it usually occurs before 40 years of age

Diabetes mellitus



Type II Diabetes Mellitus

- It is due to insulin resistance (failure of insulin receptors to give response to insulin). So, the body is unable to use insulin.
- About 90% of diabetic patients have type II diabetes mellitus. It usually occurs after 40 years.

2. HYPERACTIVITY - HYPERINSULINISM

- Hyperinsulinism is the hypersecretion of insulin
- Hyperinsulinism occurs due to the tumor of β -cells in the islets of Langerhans

PINEAL GLAND - ITS STRUCTURE AND FUNCTIONS

Introduction

- Pineal gland or epiphysis is located in the diencephalic area of brain above the hypothalamus.
- It is a small cone shaped structure with a length of about 10 mm.

Structure

- Pineal gland has two types of cells:
- 1. Large epithelial cells called parenchymal cells
- 2. Neuroglial cells.

Functions

Pineal gland has two functions:

- It controls the sexual activities in animals by regulating the seasonal fertility.
- The pineal gland plays little role in regulating the sexual functions in human being
- It secretes the hormonal substance called melatonin.

Disorders of Pineal gland

- 1. Alzheimer's disease (AD)- Common neurodegenerative disease
- It is accompanied by alterations to various lifestyle patterns, such as sleep disturbance.
- The pineal gland is the primary endocrine organ that secretes hormones, such as melatonin, and controls the circadian rhythms.
- The decrease in pineal gland volume and pineal calcification leads to the reduction of melatonin production.

PINEAL GLAND

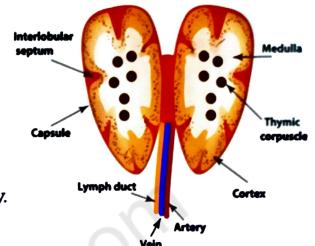
☐ THYMUS - ITS STRUCTURE AND FUNCTIONS

Introduction

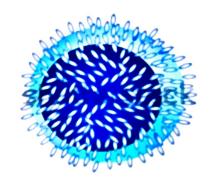
- Thymus is situated in front of trachea, below the thyroid gland.
- Thymus is small in newborn infants and gradually enlarges till puberty and then decreases in size

Functions

- Thymus has lymphoid function and endocrine function.
- It plays an important role in development of immunity in the body.


Thymus has two functions:

- 1. Processing the T lymphocytes
- 2. Endocrine function
- 1. Processing the T Lymphocytes
- Thymus plays an essential role in the development of immunity by processing the T lymphocytes.
- 2. Endocrine Function of Thymus
- Thymus secretes two hormones:
- 1. Thymosin is a peptide. It accelerates lymphopoiesis and proliferation of T lymphocytes.
- 2. Thymin is also called thymopoietin. It suppresses the neuromuscular activity by inhibiting acetylcholine release. Hyperactivity of thymus causes myasthenia gravis.


Disorders of Thymus

1. Myasthenia gravis

• It occurs when the thymus is abnormally large and produces antibodies that block or destroy the muscles' receptor sites.

T - Lymphocytes

